1. Synthesis of 3′-azido- and 3′-amino-3′-deoxyarabinonucleoside 5′-triphosphates and the investigation of their substrate properties in the systems with polynucleotide synthesizing enzymes. A.V. Papchikhin; P.P. Purygin; A.V. Azhajev; A.A. Krayevsky; T.V. Kutateladze; Z.G. Chidgavadze; R.Sh. Bibiblashvili; Bioorg. Chem., (Russia), 1985, 11, pp. 1367-1379
2. Inhibiting action of some analogues of nucleoside 5′-triphosphates on DNA synthesis catalyzed by polymerase of herprs simplex virus type 1. T.J. Kilesso; V.M. Shobukhov; A.V. Papchikhin; G.A. Galegov; Mol. Genetic, Microbiology and Virology, (Russia), 1987, N 10, pp. 41-44.
3. Inhibitory effect of 3′-amino- and 3′-azido-3′-deoxyribonucleoside 5′-triphosphates on RNA synthesis catalysed by influenza A viral RNA polymerase and cellular RNA polymerase. N.F. Pravdina; A.V. Papchikhin; P.P. Purygin; G.A. Galegov; Mol. Genetic, Microbiology and Virology, (Russia), 1989, N 1, pp. 29-33.
4. Selective inhibitors of DNA chain elongation catalysed by DNA polymerases. A.A. Krayevsky; M.K. Kukhanova; A.M. Atrazhev; N.B. Dyatkina; A.V. Papchikhin; Z.G. Chidgavadze; R.Sh. Bibiblashvili; Nucleosides and nucleotides 1988, 7(5&6), pp. 613-617
5. Conformationally restricted nucleoside 5′-triphosphates as termination substrates for DNA polymerases. Z.G. Chidgavadze; R.Sh. Bibiblashvili; T.A Rozovskaya; N.V. Tarusova; A.M. Atrazhev; N.B.Dyatkina; M.K Kukhanova; A.V. Papchikhin; A.A. Krayevsky; Mol. Biolog. (Russia), 1989, 23, pp. 1732-1742.
6. X-ray analysis of 2′,3′-lyxoanhydrothymidine, a conformationally restricted inhibitor of retroviral reverse transcriptases. G.V. Gurskaya; A.V. Bochkarev; A.S. Zdanov; A.V. Papchikhin; P.P. Purygin; A.A. Krayevsky; FEBS Letters, 1990, 265, pp. 63-66.
7. Structural features of 2′,3′-riboanhydroadenosine, a conformationaly restricted termination substrate of DNA polymerase. G.V. Gurskaya; A.V. Bochkarev; A.S. Zdanov; A.V. Papchikhin; P.P. Purygin; A.A. Krayevsky; Nucleosides and Nucleotides 1992, 11(1), pp. 1-9.
8. Synthesis of 2′,3′-dideoxy-3′-nitro-2′,3′-didehydrothymidine. Its use as a general intermediate for the preparation of various 2′,3′-substituted nucleosides. N. Hossain; A. Papchikhin; N. Garg; I. Federov; J. Chattopadhyaya; Nucleosides and Nucleotides, 1993, 12(5), pp. 499-528.
9. [4+2] and [3+2] cycloaddition reactions of 2′,3′-dideoxy-3′-nitro-2′,3′-didehydrothymidine with ethyl vinyl ether. A. Papchikhin; P. Agback; J. Plavec; J. Chattopadhyaya; J. Org. Chem., 1993, 58, pp. 2874-2879.
10. Solution and solid state structure of 2′,5′-bis-(O-trityl)-3′-oximinouridine. P. Agback; A. Papchikhin; S. Neidle; J. Chattopadhyaya; Nucleosides and Nucleotides, 1993, 12(6), pp. 605-614.
11. Synthesis of 2′- and 3′-spiro-isoxazolidine derivatives of thymidine and their conversion to 2′,3′-dideoxy-2′,3′-didehydro-3′-C-substituted nucleosides by radical promoted fragmentation. N. Hossain; A. Papchikhin; J. Plavec; J. Chattopadhyaya; Tetrahedron. 1993, 49, pp. 10133-10156.
12. New diastereospecific synthesis of 2′,3′-dideoxy-2′- or 3′-C2-branched- or 2′,3′-?-fused-isoxazolidine nucleosides directly from the seconucleoside. A. Papchikhin; J. Chattopadhyaya; Tetrahedron. 1994, 50, pp. 5279-5286.
13. How does the electronegativity of the substituent dictate the strength of the gauche effect? C. Thibaudeau; J. Plavec; N. Garg; A. Papchikhin; J. Chattopadhyaya; J. Am. Chem. Soc. 1994, 116, pp. 4038-4043.
14. 2′,3′-Dideoxy-3′-C,2′-N-[(3R,5R)-5-ethoxycarbonyl-2-methyl-1,2-isoxazolidine]ribothymidi-ne. B. M. Burkhart; A. Papchikhin; J. Chattopadhyaya; M. Sundaralingam. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1995, C51(7), 1462-4.
15. The diastereospecific synthesis of new 2′,3′-cis-?-fused carbocyclic nucleosides. A. Papchikhin; P. Agback; J. Plavec; J. Chattopadhyaya; Tetrahedron. 1995, 51, pp. 329-342.
16. 2′,3′-Dideoxy-3′-nitrothymidine and 2′-propoxy-3′-nitrothymidine. S. Neidle; J. Chattopadhyaya; N. Hossain; A. Papchikhin. Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 1996, C52(12), 3173-3177.